#!/usr/bin/env python3 import os import json import numpy as np import matplotlib.pyplot as plt import xarray as xr from metpy.interpolate import cross_section import metpy.calc as mpcalc from metpy.units import units import misc def run(data, plots, output='.'): misc.create_output_dir(output) index = [] for plot in plots: index.append(_plot(data, output, **plot)) return index def _plot(data, output, name, lat, lon): index = [] data = data.sel(latitude=lat, longitude = lon, method='nearest') init = misc.np_time_convert(data.time.values) init_str = init.strftime('%d %b %Y - %HUTC') init_for_filename = init.strftime('%Y-%m-%d-%HUTC') fig = plt.figure(figsize=(10, 10), layout="constrained") # start figure and set axis ax = fig.add_subplot(5,1,(1,2)) ax.set_ylabel('Pressure level [hPa]') clc = ax.contourf(data.valid_time, data.isobaricInhPa, data.ccl.transpose(), cmap='clcov', vmin=0, vmax=100, levels=9) # use Format parameter for n/8 plt.colorbar(clc, label='cloudcov', extendfrac=None, ticks=[100*n/8 for n in range(9)], format=lambda x,_: f'{int(x/12.5)}/8', pad=0.0, fraction=0.015) cf = ax.contour(data.valid_time, data.isobaricInhPa, data.t.metpy.convert_units('degC').transpose()) ax.clabel(cf, inline=True, fontsize=10) barbs = ax.barbs(data.valid_time, data.isobaricInhPa, data.u.transpose(), data.v.transpose()) ax.invert_yaxis() ### Temp + Dewpoint ax2 = fig.add_subplot(5,1,3,sharex=ax) ax2.plot(data.valid_time, data.t2m.metpy.convert_units('degC').transpose(), color='red', label='Temperature (2m)') ax2.plot(data.valid_time, mpcalc.dewpoint_from_relative_humidity(data.t2m, data.r2).transpose(), color='blue', label='Dewpoint (2m)') ax2.set_ylabel('Temperature [degC]') ax2.legend(loc='lower right') ## MSLP ax3 = fig.add_subplot(5,1,4,sharex=ax) ax3.plot(data.valid_time, data.prmsl.metpy.convert_units('hPa').transpose(), color='black', label='Temperature (2m)') ax3.set_ylabel('Mean Sea Level Pressure [hPa]') #ax3.legend(loc='lower right') # TODO: ADD HBAS_CON, HTOP_CON # If none: -500m ax4 = ax3.twinx() ax4.set_ylim(0, 14) ax4.set_ylabel('Convective Clouds Height [km]') ax4.bar(data.valid_time, bottom=data.HBAS_CON.metpy.convert_units('km').transpose(), height=(data.hcct.metpy.convert_units('km')-data.HBAS_CON.metpy.convert_units('km')).transpose(), align='edge', width=np.timedelta64(3, 'h')) ### Info Lines info_lines = [] init = misc.np_time_convert(data.time.values) init_str = init.strftime('%d %b %Y - %HUTC') info_lines.append(f'{name}') info_lines.append(f"INIT : {init_str}") info_lines.append(f"LAT {lat} LON {lon}") if '_description' in data.attrs: info_lines.append(data.attrs['_description']) ax_text = fig.add_subplot(5, 1, 5) ax_text.text(0, 0, '\n'.join(info_lines), ha='left', va='center', size=10, fontfamily='monospace') ax_text.axis("off") ### Output outname = f'{name}_{init_for_filename}.png' plt.savefig(os.path.join(output, outname)) plt.close('all') index.append( { 'file': outname, 'init': init_str, 'valid': init_str, 'valid_offset': '00' } ) with open(os.path.join(output, f'{name}.index.json'), 'w') as f: f.write(json.dumps(index, indent=4)) return { 'name': name, 'indexfile': f'{name}.index.json' }