#!/usr/bin/env python3 import os import json import numpy as np import matplotlib.pyplot as plt import metpy.calc as mpcalc import misc HEIGHT = 13 def run(data, plots, output='.'): misc.create_output_dir(output) index = [] for plot in plots: index.append(_plot(data, output, **plot)) return index def _get_next_subplot(size, counter=0): ret = (counter + 1, counter + size) counter += size return counter, ret def _add_cloudcov(ax, data): ax.set_ylabel('Pressure level [hPa]') clc = ax.contourf(data.valid_time, data.isobaricInhPa, data.ccl.transpose(), cmap='clcov', vmin=0, vmax=100, levels=9) # use Format parameter for n/8 plt.colorbar(clc, label='cloudcov', extendfrac=None, ticks=[100*n/8 for n in range(9)], format=lambda x,_: f'{int(x/12.5)}/8', pad=0.0, fraction=0.015) cf = ax.contour(data.valid_time, data.isobaricInhPa, data.t.metpy.convert_units('degC').transpose()) ax.clabel(cf, inline=True, fontsize=10) ax.barbs( data.valid_time, data.isobaricInhPa, data.u.metpy.convert_units('kt').transpose(), data.v.metpy.convert_units('kt').transpose() ) ax.invert_yaxis() def _add_temp_dewpoint(ax, data): ### Temp + Dewpoint ax.plot(data.valid_time, data.t2m.metpy.convert_units('degC').transpose(), color='red', label='Temperature (2m)') ax.plot(data.valid_time, mpcalc.dewpoint_from_relative_humidity(data.t2m, data.r2).transpose(), color='blue', label='Dewpoint (2m)') ax.plot(data.valid_time, data.sel(isobaricInhPa=850.0).t.metpy.convert_units('degC').transpose(), color='grey', label='Tempreature (850hPa)') ax.set_ylabel('Temperature [degC]') ax.legend(loc='lower right') def _add_mslp(ax, data): ax.plot(data.valid_time, data.prmsl.metpy.convert_units('hPa').transpose(), color='black', label='Temperature (2m)') ax.set_ylabel('Mean Sea Level Pressure [hPa]') def _add_convective_clouds(ax, data): # TODO: ADD HBAS_CON, HTOP_CON # If none: -500m ax.set_ylim(0, 14) ax.set_ylabel('Convective Clouds Height [km]') ax.bar(data.valid_time, alpha=0.5, bottom=data.HBAS_CON.metpy.convert_units('km').transpose(), height=(data.hcct.metpy.convert_units('km')-data.HBAS_CON.metpy.convert_units('km')).transpose(), align='edge', width=np.timedelta64(3, 'h')) def _add_precip(ax, data): ax.set_ylabel('Total precipitation [mm]') ax.set_ylim(0, 30) ax.bar(data.valid_time[:-1], data.tp.diff('step').transpose(), width=np.timedelta64(3, 'h'), align='edge', alpha=0.7, color='green') ax_p = ax.twinx() ax_p.set_ylabel('Snow depth [m]') ax_p.set_ylim(bottom=0) ax_p.plot(data.valid_time, data.sde.transpose(), color='blue') def _add_surface_wind(ax, data): ax.plot(data.valid_time, mpcalc.wind_speed(data.u10.transpose(), data.v10.transpose()), color='black', label='Wind (10m)') ax.plot(data.valid_time, data.fg10.transpose(), color='red', label='Gust (10m)') ax_b = ax.twinx() ax_b.barbs( data.valid_time, [1 for _ in data.valid_time], data.u10.metpy.convert_units('kt').transpose(), data.v10.metpy.convert_units('kt').transpose() ) ax_b.axis('off') ax.set_ylabel('Wind Speed [m/s]') ax.legend(loc='lower right') def _plot(data, output, name, lat, lon): data = data.sel(latitude=lat, longitude = lon, method='nearest') fig = plt.figure(figsize=(12, 12), layout="constrained") sp_cnt, spec = _get_next_subplot(4) ax = fig.add_subplot(HEIGHT,1,spec) _add_cloudcov(ax, data) sp_cnt, spec2 = _get_next_subplot(2,sp_cnt) ax2 = fig.add_subplot(HEIGHT,1,spec2,sharex=ax) _add_temp_dewpoint(ax2, data) sp_cnt, spec3 = _get_next_subplot(2,sp_cnt) ax3 = fig.add_subplot(HEIGHT,1,spec3,sharex=ax) #ax3.legend(loc='lower right') _add_mslp(ax3, data) ax4 = ax3.twinx() _add_convective_clouds(ax4, data) sp_cnt, spec4 = _get_next_subplot(2,sp_cnt) ax5 = fig.add_subplot(HEIGHT,1,spec4,sharex=ax) _add_precip(ax5, data) sp_cnt, spec5 = _get_next_subplot(2,sp_cnt) ax6 = fig.add_subplot(HEIGHT,1,spec5,sharex=ax) _add_surface_wind(ax6, data) ### Info Lines sp_cnt, spec5 = _get_next_subplot(1,sp_cnt) ax_text = fig.add_subplot(HEIGHT, 1, spec5) info_lines = [] init = misc.np_time_convert(data.time.values) init_str = init.strftime('%d %b %Y - %HUTC') init_for_filename = init.strftime('%Y-%m-%d-%HUTC') info_lines.append(f'{name}') info_lines.append(f"INIT : {init_str}") info_lines.append(f"LAT {lat} LON {lon}") if '_description' in data.attrs: info_lines.append(data.attrs['_description']) ax_text.text(0, 0, '\n'.join(info_lines), ha='left', va='center', size=10, fontfamily='monospace') ax_text.axis("off") ### Output outname = f'{name}_{init_for_filename}.png' plt.savefig(os.path.join(output, outname)) plt.close('all') index = [] index.append( { 'file': outname, 'init': init_str, 'valid': init_str, 'valid_offset': '00' } ) with open(os.path.join(output, f'{name}.index.json'), 'w') as f: f.write(json.dumps(index, indent=4)) return { 'name': name, 'indexfile': f'{name}.index.json' }