1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.colors import LinearSegmentedColormap
import xarray as xr
from metpy.interpolate import cross_section
clcov_cmap = {
'red': (
(0.0, 0.0, 0.0),
(0.1, 1.0, 1.0),
(1.0, 0.2, 0.2),
),
'green': (
(0.0, 0.0, 0.0),
(0.1, 1.0, 1.0),
(1.0, 0.2, 0.2),
),
'blue': (
(0.0, 1.0, 1.0),
(0.1, 1.0, 1.0),
(1.0, 0.2, 0.2),
),
}
mpl.colormaps.register(LinearSegmentedColormap('clcov', clcov_cmap))
data = xr.load_dataset('dwd_icon-eu/combined.grib2', engine='cfgrib')
lat, lon = (47.96, 11.99)
data = data.sel(latitude=lat, longitude = lon, method='nearest')
print(data)
# start figure and set axis
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_ylabel('Pressure level [hPa]')
#clc = ax.plot(data.step.values.astype('float64'), data.isobaricInhPa, data.ccl.transpose())
#clc = ax.imshow(data.ccl.transpose(), extent=(data.step.values.astype(float).min(), data.step.values.astype(float).max(), data.isobaricInhPa.min(), data.isobaricInhPa.max()), aspect='auto', cmap='Blues_r', vmin=0, vmax=100)
#plt.colorbar(clc, label='clcov')
# Blues_r
clc = ax.contourf(data.step.values.astype('float64'), data.isobaricInhPa, data.ccl.transpose(), cmap='clcov', vmin=0, vmax=100, levels=9)
# use Format parameter for n/8
plt.colorbar(clc, label='cloudcov', extendfrac=None, ticks=[100*n/8 for n in range(9)], format=lambda x,_: f'{int(x/12.5)}/8')
cf = ax.contour(data.step.values.astype('float64'), data.isobaricInhPa, data.t.metpy.convert_units('degC').transpose())
ax.clabel(cf, inline=True, fontsize=10)
#plt.colorbar(cf, pad=0, aspect=50)
#plt.colorbar(cf)
barbs = ax.barbs(data.step.values.astype('float64'), data.isobaricInhPa, data.u.transpose(), data.v.transpose())
#ax.barbs(data.u, data.v, color='black', length=5, alpha=0.5)
ax.invert_yaxis()
plt.show()
|