aboutsummaryrefslogtreecommitdiff
path: root/gl/mktime.c
diff options
context:
space:
mode:
Diffstat (limited to 'gl/mktime.c')
-rw-r--r--gl/mktime.c378
1 files changed, 191 insertions, 187 deletions
diff --git a/gl/mktime.c b/gl/mktime.c
index 0f30d43f..b0324b82 100644
--- a/gl/mktime.c
+++ b/gl/mktime.c
@@ -1,5 +1,5 @@
/* Convert a `struct tm' to a time_t value.
- Copyright (C) 1993-1999, 2002-2005, 2006, 2007 Free Software Foundation, Inc.
+ Copyright (C) 1993-1999, 2002-2007, 2009-2010 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Paul Eggert <eggert@twinsun.com>.
@@ -36,7 +36,7 @@
#include <limits.h>
-#include <string.h> /* For the real memcpy prototype. */
+#include <string.h> /* For the real memcpy prototype. */
#if DEBUG
# include <stdio.h>
@@ -55,9 +55,9 @@
implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
right in the usual way when A < 0, so SHR falls back on division if
ordinary A >> B doesn't seem to be the usual signed shift. */
-#define SHR(a, b) \
- (-1 >> 1 == -1 \
- ? (a) >> (b) \
+#define SHR(a, b) \
+ (-1 >> 1 == -1 \
+ ? (a) >> (b) \
: (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
/* The extra casts in the following macros work around compiler bugs,
@@ -84,14 +84,14 @@
your host. */
#define TYPE_MINIMUM(t) \
((t) (! TYPE_SIGNED (t) \
- ? (t) 0 \
- : TYPE_SIGNED_MAGNITUDE (t) \
- ? ~ (t) 0 \
- : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))
+ ? (t) 0 \
+ : TYPE_SIGNED_MAGNITUDE (t) \
+ ? ~ (t) 0 \
+ : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))
#define TYPE_MAXIMUM(t) \
((t) (! TYPE_SIGNED (t) \
- ? (t) -1 \
- : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))))
+ ? (t) -1 \
+ : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))))
#ifndef TIME_T_MIN
# define TIME_T_MIN TYPE_MINIMUM (time_t)
@@ -123,7 +123,7 @@ leapyear (long int year)
return
((year & 3) == 0
&& (year % 100 != 0
- || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
+ || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
}
/* How many days come before each month (0-12). */
@@ -147,6 +147,7 @@ const unsigned short int __mon_yday[2][13] =
# undef __localtime_r
# define __localtime_r localtime_r
# define __mktime_internal mktime_internal
+# include "mktime-internal.h"
#endif
/* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
@@ -162,11 +163,14 @@ const unsigned short int __mon_yday[2][13] =
static inline time_t
ydhms_diff (long int year1, long int yday1, int hour1, int min1, int sec1,
- int year0, int yday0, int hour0, int min0, int sec0)
+ int year0, int yday0, int hour0, int min0, int sec0)
{
verify (C99_integer_division, -1 / 2 == 0);
+#if 0 /* This assertion fails on 32-bit systems with 64-bit time_t, such as
+ NetBSD 5 on i386. */
verify (long_int_year_and_yday_are_wide_enough,
- INT_MAX <= LONG_MAX / 2 || TIME_T_MAX <= UINT_MAX);
+ INT_MAX <= LONG_MAX / 2 || TIME_T_MAX <= UINT_MAX);
+#endif
/* Compute intervening leap days correctly even if year is negative.
Take care to avoid integer overflow here. */
@@ -198,16 +202,16 @@ ydhms_diff (long int year1, long int yday1, int hour1, int min1, int sec1,
yield a value equal to *T. */
static time_t
guess_time_tm (long int year, long int yday, int hour, int min, int sec,
- const time_t *t, const struct tm *tp)
+ const time_t *t, const struct tm *tp)
{
if (tp)
{
time_t d = ydhms_diff (year, yday, hour, min, sec,
- tp->tm_year, tp->tm_yday,
- tp->tm_hour, tp->tm_min, tp->tm_sec);
+ tp->tm_year, tp->tm_yday,
+ tp->tm_hour, tp->tm_min, tp->tm_sec);
time_t t1 = *t + d;
if ((t1 < *t) == (TYPE_SIGNED (time_t) ? d < 0 : TIME_T_MAX / 2 < d))
- return t1;
+ return t1;
}
/* Overflow occurred one way or another. Return the nearest result
@@ -216,8 +220,8 @@ guess_time_tm (long int year, long int yday, int hour, int min, int sec,
match; and don't oscillate between two values, as that would
confuse the spring-forward gap detector. */
return (*t < TIME_T_MIDPOINT
- ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
- : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
+ ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
+ : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
}
/* Use CONVERT to convert *T to a broken down time in *TP.
@@ -225,7 +229,7 @@ guess_time_tm (long int year, long int yday, int hour, int min, int sec,
it is the nearest in-range value and then convert that. */
static struct tm *
ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
- time_t *t, struct tm *tp)
+ time_t *t, struct tm *tp)
{
struct tm *r = convert (t, tp);
@@ -235,27 +239,27 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
time_t ok = 0;
/* BAD is a known unconvertible time_t, and OK is a known good one.
- Use binary search to narrow the range between BAD and OK until
- they differ by 1. */
+ Use binary search to narrow the range between BAD and OK until
+ they differ by 1. */
while (bad != ok + (bad < 0 ? -1 : 1))
- {
- time_t mid = *t = (bad < 0
- ? bad + ((ok - bad) >> 1)
- : ok + ((bad - ok) >> 1));
- r = convert (t, tp);
- if (r)
- ok = mid;
- else
- bad = mid;
- }
+ {
+ time_t mid = *t = (bad < 0
+ ? bad + ((ok - bad) >> 1)
+ : ok + ((bad - ok) >> 1));
+ r = convert (t, tp);
+ if (r)
+ ok = mid;
+ else
+ bad = mid;
+ }
if (!r && ok)
- {
- /* The last conversion attempt failed;
- revert to the most recent successful attempt. */
- *t = ok;
- r = convert (t, tp);
- }
+ {
+ /* The last conversion attempt failed;
+ revert to the most recent successful attempt. */
+ *t = ok;
+ r = convert (t, tp);
+ }
}
return r;
@@ -270,8 +274,8 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
This function is external because it is used also by timegm.c. */
time_t
__mktime_internal (struct tm *tp,
- struct tm *(*convert) (const time_t *, struct tm *),
- time_t *offset)
+ struct tm *(*convert) (const time_t *, struct tm *),
+ time_t *offset)
{
time_t t, gt, t0, t1, t2;
struct tm tm;
@@ -292,7 +296,7 @@ __mktime_internal (struct tm *tp,
int year_requested = tp->tm_year;
/* Normalize the value. */
int isdst = ((tp->tm_isdst >> (8 * sizeof (tp->tm_isdst) - 1))
- | (tp->tm_isdst != 0));
+ | (tp->tm_isdst != 0));
/* 1 if the previous probe was DST. */
int dst2;
@@ -312,8 +316,8 @@ __mktime_internal (struct tm *tp,
/* Calculate day of year from year, month, and day of month.
The result need not be in range. */
int mon_yday = ((__mon_yday[leapyear (year)]
- [mon_remainder + 12 * negative_mon_remainder])
- - 1);
+ [mon_remainder + 12 * negative_mon_remainder])
+ - 1);
long int lmday = mday;
long int yday = mon_yday + lmday;
@@ -324,33 +328,33 @@ __mktime_internal (struct tm *tp,
if (LEAP_SECONDS_POSSIBLE)
{
/* Handle out-of-range seconds specially,
- since ydhms_tm_diff assumes every minute has 60 seconds. */
+ since ydhms_tm_diff assumes every minute has 60 seconds. */
if (sec < 0)
- sec = 0;
+ sec = 0;
if (59 < sec)
- sec = 59;
+ sec = 59;
}
/* Invert CONVERT by probing. First assume the same offset as last
time. */
t0 = ydhms_diff (year, yday, hour, min, sec,
- EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
+ EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3)
{
/* time_t isn't large enough to rule out overflows, so check
- for major overflows. A gross check suffices, since if t0
- has overflowed, it is off by a multiple of TIME_T_MAX -
- TIME_T_MIN + 1. So ignore any component of the difference
- that is bounded by a small value. */
+ for major overflows. A gross check suffices, since if t0
+ has overflowed, it is off by a multiple of TIME_T_MAX -
+ TIME_T_MIN + 1. So ignore any component of the difference
+ that is bounded by a small value. */
/* Approximate log base 2 of the number of time units per
- biennium. A biennium is 2 years; use this unit instead of
- years to avoid integer overflow. For example, 2 average
- Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
- which is 63113904 seconds, and rint (log2 (63113904)) is
- 26. */
+ biennium. A biennium is 2 years; use this unit instead of
+ years to avoid integer overflow. For example, 2 average
+ Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
+ which is 63113904 seconds, and rint (log2 (63113904)) is
+ 26. */
int ALOG2_SECONDS_PER_BIENNIUM = 26;
int ALOG2_MINUTES_PER_BIENNIUM = 20;
int ALOG2_HOURS_PER_BIENNIUM = 14;
@@ -358,64 +362,64 @@ __mktime_internal (struct tm *tp,
int LOG2_YEARS_PER_BIENNIUM = 1;
int approx_requested_biennia =
- (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
- - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
- + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
- + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
- + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
- + (LEAP_SECONDS_POSSIBLE
- ? 0
- : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
+ (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
+ - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
+ + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
+ + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
+ + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
+ + (LEAP_SECONDS_POSSIBLE
+ ? 0
+ : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM);
int diff = approx_biennia - approx_requested_biennia;
int abs_diff = diff < 0 ? - diff : diff;
/* IRIX 4.0.5 cc miscaculates TIME_T_MIN / 3: it erroneously
- gives a positive value of 715827882. Setting a variable
- first then doing math on it seems to work.
- (ghazi@caip.rutgers.edu) */
+ gives a positive value of 715827882. Setting a variable
+ first then doing math on it seems to work.
+ (ghazi@caip.rutgers.edu) */
time_t time_t_max = TIME_T_MAX;
time_t time_t_min = TIME_T_MIN;
time_t overflow_threshold =
- (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
+ (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
if (overflow_threshold < abs_diff)
- {
- /* Overflow occurred. Try repairing it; this might work if
- the time zone offset is enough to undo the overflow. */
- time_t repaired_t0 = -1 - t0;
- approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
- diff = approx_biennia - approx_requested_biennia;
- abs_diff = diff < 0 ? - diff : diff;
- if (overflow_threshold < abs_diff)
- return -1;
- guessed_offset += repaired_t0 - t0;
- t0 = repaired_t0;
- }
+ {
+ /* Overflow occurred. Try repairing it; this might work if
+ the time zone offset is enough to undo the overflow. */
+ time_t repaired_t0 = -1 - t0;
+ approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
+ diff = approx_biennia - approx_requested_biennia;
+ abs_diff = diff < 0 ? - diff : diff;
+ if (overflow_threshold < abs_diff)
+ return -1;
+ guessed_offset += repaired_t0 - t0;
+ t0 = repaired_t0;
+ }
}
/* Repeatedly use the error to improve the guess. */
for (t = t1 = t2 = t0, dst2 = 0;
(gt = guess_time_tm (year, yday, hour, min, sec, &t,
- ranged_convert (convert, &t, &tm)),
- t != gt);
+ ranged_convert (convert, &t, &tm)),
+ t != gt);
t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0)
if (t == t1 && t != t2
- && (tm.tm_isdst < 0
- || (isdst < 0
- ? dst2 <= (tm.tm_isdst != 0)
- : (isdst != 0) != (tm.tm_isdst != 0))))
+ && (tm.tm_isdst < 0
+ || (isdst < 0
+ ? dst2 <= (tm.tm_isdst != 0)
+ : (isdst != 0) != (tm.tm_isdst != 0))))
/* We can't possibly find a match, as we are oscillating
- between two values. The requested time probably falls
- within a spring-forward gap of size GT - T. Follow the common
- practice in this case, which is to return a time that is GT - T
- away from the requested time, preferring a time whose
- tm_isdst differs from the requested value. (If no tm_isdst
- was requested and only one of the two values has a nonzero
- tm_isdst, prefer that value.) In practice, this is more
- useful than returning -1. */
+ between two values. The requested time probably falls
+ within a spring-forward gap of size GT - T. Follow the common
+ practice in this case, which is to return a time that is GT - T
+ away from the requested time, preferring a time whose
+ tm_isdst differs from the requested value. (If no tm_isdst
+ was requested and only one of the two values has a nonzero
+ tm_isdst, prefer that value.) In practice, this is more
+ useful than returning -1. */
goto offset_found;
else if (--remaining_probes == 0)
return -1;
@@ -425,52 +429,52 @@ __mktime_internal (struct tm *tp,
if (isdst != tm.tm_isdst && 0 <= isdst && 0 <= tm.tm_isdst)
{
/* tm.tm_isdst has the wrong value. Look for a neighboring
- time with the right value, and use its UTC offset.
+ time with the right value, and use its UTC offset.
- Heuristic: probe the adjacent timestamps in both directions,
- looking for the desired isdst. This should work for all real
- time zone histories in the tz database. */
+ Heuristic: probe the adjacent timestamps in both directions,
+ looking for the desired isdst. This should work for all real
+ time zone histories in the tz database. */
/* Distance between probes when looking for a DST boundary. In
- tzdata2003a, the shortest period of DST is 601200 seconds
- (e.g., America/Recife starting 2000-10-08 01:00), and the
- shortest period of non-DST surrounded by DST is 694800
- seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
- minimum of these two values, so we don't miss these short
- periods when probing. */
+ tzdata2003a, the shortest period of DST is 601200 seconds
+ (e.g., America/Recife starting 2000-10-08 01:00), and the
+ shortest period of non-DST surrounded by DST is 694800
+ seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
+ minimum of these two values, so we don't miss these short
+ periods when probing. */
int stride = 601200;
/* The longest period of DST in tzdata2003a is 536454000 seconds
- (e.g., America/Jujuy starting 1946-10-01 01:00). The longest
- period of non-DST is much longer, but it makes no real sense
- to search for more than a year of non-DST, so use the DST
- max. */
+ (e.g., America/Jujuy starting 1946-10-01 01:00). The longest
+ period of non-DST is much longer, but it makes no real sense
+ to search for more than a year of non-DST, so use the DST
+ max. */
int duration_max = 536454000;
/* Search in both directions, so the maximum distance is half
- the duration; add the stride to avoid off-by-1 problems. */
+ the duration; add the stride to avoid off-by-1 problems. */
int delta_bound = duration_max / 2 + stride;
int delta, direction;
for (delta = stride; delta < delta_bound; delta += stride)
- for (direction = -1; direction <= 1; direction += 2)
- {
- time_t ot = t + delta * direction;
- if ((ot < t) == (direction < 0))
- {
- struct tm otm;
- ranged_convert (convert, &ot, &otm);
- if (otm.tm_isdst == isdst)
- {
- /* We found the desired tm_isdst.
- Extrapolate back to the desired time. */
- t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
- ranged_convert (convert, &t, &tm);
- goto offset_found;
- }
- }
- }
+ for (direction = -1; direction <= 1; direction += 2)
+ {
+ time_t ot = t + delta * direction;
+ if ((ot < t) == (direction < 0))
+ {
+ struct tm otm;
+ ranged_convert (convert, &ot, &otm);
+ if (otm.tm_isdst == isdst)
+ {
+ /* We found the desired tm_isdst.
+ Extrapolate back to the desired time. */
+ t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
+ ranged_convert (convert, &t, &tm);
+ goto offset_found;
+ }
+ }
+ }
}
offset_found:
@@ -479,14 +483,14 @@ __mktime_internal (struct tm *tp,
if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
{
/* Adjust time to reflect the tm_sec requested, not the normalized value.
- Also, repair any damage from a false match due to a leap second. */
+ Also, repair any damage from a false match due to a leap second. */
int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec;
t1 = t + sec_requested;
t2 = t1 + sec_adjustment;
if (((t1 < t) != (sec_requested < 0))
- | ((t2 < t1) != (sec_adjustment < 0))
- | ! convert (&t2, &tm))
- return -1;
+ | ((t2 < t1) != (sec_adjustment < 0))
+ | ! convert (&t2, &tm))
+ return -1;
t = t2;
}
@@ -530,13 +534,13 @@ static int
not_equal_tm (const struct tm *a, const struct tm *b)
{
return ((a->tm_sec ^ b->tm_sec)
- | (a->tm_min ^ b->tm_min)
- | (a->tm_hour ^ b->tm_hour)
- | (a->tm_mday ^ b->tm_mday)
- | (a->tm_mon ^ b->tm_mon)
- | (a->tm_year ^ b->tm_year)
- | (a->tm_yday ^ b->tm_yday)
- | (a->tm_isdst ^ b->tm_isdst));
+ | (a->tm_min ^ b->tm_min)
+ | (a->tm_hour ^ b->tm_hour)
+ | (a->tm_mday ^ b->tm_mday)
+ | (a->tm_mon ^ b->tm_mon)
+ | (a->tm_year ^ b->tm_year)
+ | (a->tm_yday ^ b->tm_yday)
+ | (a->tm_isdst ^ b->tm_isdst));
}
static void
@@ -544,9 +548,9 @@ print_tm (const struct tm *tp)
{
if (tp)
printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d",
- tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
- tp->tm_hour, tp->tm_min, tp->tm_sec,
- tp->tm_yday, tp->tm_wday, tp->tm_isdst);
+ tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
+ tp->tm_hour, tp->tm_min, tp->tm_sec,
+ tp->tm_yday, tp->tm_wday, tp->tm_isdst);
else
printf ("0");
}
@@ -578,11 +582,11 @@ main (int argc, char **argv)
if ((argc == 3 || argc == 4)
&& (sscanf (argv[1], "%d-%d-%d%c",
- &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
- == 3)
+ &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
+ == 3)
&& (sscanf (argv[2], "%d:%d:%d%c",
- &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
- == 3))
+ &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
+ == 3))
{
tm.tm_year -= TM_YEAR_BASE;
tm.tm_mon--;
@@ -591,10 +595,10 @@ main (int argc, char **argv)
tl = mktime (&tmk);
lt = localtime (&tl);
if (lt)
- {
- tml = *lt;
- lt = &tml;
- }
+ {
+ tml = *lt;
+ lt = &tml;
+ }
printf ("mktime returns %ld == ", (long int) tl);
print_tm (&tmk);
printf ("\n");
@@ -607,51 +611,51 @@ main (int argc, char **argv)
time_t to = atol (argv[3]);
if (argc == 4)
- for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
- {
- lt = localtime (&tl);
- if (lt)
- {
- tmk = tml = *lt;
- tk = mktime (&tmk);
- status |= check_result (tk, tmk, tl, &tml);
- }
- else
- {
- printf ("localtime (%ld) yields 0\n", (long int) tl);
- status = 1;
- }
- tl1 = tl + by;
- if ((tl1 < tl) != (by < 0))
- break;
- }
+ for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
+ {
+ lt = localtime (&tl);
+ if (lt)
+ {
+ tmk = tml = *lt;
+ tk = mktime (&tmk);
+ status |= check_result (tk, tmk, tl, &tml);
+ }
+ else
+ {
+ printf ("localtime (%ld) yields 0\n", (long int) tl);
+ status = 1;
+ }
+ tl1 = tl + by;
+ if ((tl1 < tl) != (by < 0))
+ break;
+ }
else
- for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
- {
- /* Null benchmark. */
- lt = localtime (&tl);
- if (lt)
- {
- tmk = tml = *lt;
- tk = tl;
- status |= check_result (tk, tmk, tl, &tml);
- }
- else
- {
- printf ("localtime (%ld) yields 0\n", (long int) tl);
- status = 1;
- }
- tl1 = tl + by;
- if ((tl1 < tl) != (by < 0))
- break;
- }
+ for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
+ {
+ /* Null benchmark. */
+ lt = localtime (&tl);
+ if (lt)
+ {
+ tmk = tml = *lt;
+ tk = tl;
+ status |= check_result (tk, tmk, tl, &tml);
+ }
+ else
+ {
+ printf ("localtime (%ld) yields 0\n", (long int) tl);
+ status = 1;
+ }
+ tl1 = tl + by;
+ if ((tl1 < tl) != (by < 0))
+ break;
+ }
}
else
printf ("Usage:\
\t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\
\t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\
\t%s FROM BY TO - # Do not test those values (for benchmark).\n",
- argv[0], argv[0], argv[0]);
+ argv[0], argv[0], argv[0]);
return status;
}